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Abstract

This report presents a technique for constrained solution of a system of matrix

equations which arises in the problem of pole placement with static dissipative output

feedback. Previously developed necessary conditions for the existence of a solution are

shown to be sufficient as well. A minimax approach is presented to determine a feasible

coefficient vector that satisfies these conditions. A procedure to construct the desired

solution matrix, based on minimax programming techniques, is detailed. Numerical

examples are presented to illustrate the application of this approach.
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Constrained Solution of a
System of Matrix Equations

Introduction

A technique for constrained solutions of the system of matrix equations

GW1p = V1p

GW2p = V2p

(1)

whereWi; Vi; i = 1; 2; are givenm � n data matrices,G is anm � m unknown

matrix, andp is an arbitrary unknownn � 1 coefficient vector, is described in this

report. The solution matrix,G, is constrained such that its symmetric part, that is,

symfGg ,
1

2

�
G +G

T
�
, is positive semidefinite. A further constraint on the solution is

also considered, wherein the solution matrixG is symmetric and positive semidefinite.

Such systems of matrix equations arise in the eigensystem assignment problem with

dissipativity constraints1,2. The eigenpair assignment problem is reduced to a system of

equations in Eq. (1), whereG is the unknown feedback gain matrix that must satisfy the

dissipativity constraints andp is an arbitrary coefficient vector. Specifically, Eq. (14)

of Ref. 2 corresponds to Eq. (1) above, which is investigated in this report. Necessary

conditions on the arbitrary coefficient vector,p, for the existence of a solution matrix,

G, are available in Ref. 2.

This report shows that the necessary conditions on the arbitrary coefficient vector,p,

for the existence of a solution matrix2 are sufficient as well. This development reduces

the problem of constrained solution of the system of matrices to determining a feasible

coefficient vector. A minimax approach to determine a coefficient vector satisfying these

conditions is presented. The technique to obtain a matrix,G, that satisfies the system of

equations in Eq. (1) along with the constraints of positive semidefiniteness is detailed.

A numerical example has been presented to illustrate this technique.
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Solution Technique

First, a proposition presents necessary and sufficient conditions on the arbitrary

coefficient vector,p, for the existence of a constrained solution to the system of matrices

in Eq. (1).

Proposition. A matrix G whose symmetric part is positive semidefinite satisfies Eq. (1)

if and only if there exists a vectorp which satisfies

pTV T

1 W1p � 0

pTV T

2 W2p � 0�
pT V T

1 W1p
��

pTV T

2 W2p
�
�

1

4

�
pTV T

1 W2p+ pT V T

2 W1p
�2
� 0

(2)

Furthermore, a symmetric and positive semidefinite matrixG solves Eq. (1) if

and only if there exists a vectorp which satisfies the inequalities in Eq. (2) and

pTV T
1
W2p = pT V T

2
W1p.

Proof: The necessity of the conditions in Eq. (2) for existence of a solution has been

proved in Ref. 2. The following presents another approach to this proof. Denote

y1 = V1p; y2 = V2p; x1 = W1p andx2 = W2p: Then, the conditions in Eq. (2) become

yT
1
x1 � 0; yT

2
x2 � 0 and

�
yT
1
x1
��
yT
2
x2
�
�

1

4

�
yT
1
x2 + yT

2
x1
�2
� 0. Eq. (1) can be

written asG[x1 x2 ] = [y1 y2 ], and premultiplying this by[x1 x2 ]
T leads to

[x1 x2 ]
T
G[x1 x2 ] = [x1 x2 ]

T
[y1 y2 ]

=

"
xT
1
y1 xT

1
y2

xT
2
y1 xT

2
y2

#
(3)

Adding Eq. (3) and its transpose yields

[x1 x2 ]
T
[sym(G)][x1 x2 ] =

"
yT
1
x1 0:5

�
yT
1
x2 + yT

2
x1
�

0:5
�
yT
1
x2 + yT

2
x1
�

yT
2
x2

#
(4)

Now if sym(G) � 0, then Eq. (4) implies that"
yT
1
x1 0:5

�
yT
1
x2 + yT

2
x1
�

0:5
�
yT
1
x2 + yT

2
x1
�

yT
2
x2

#
� 0 (5)
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Since determinants of the principal minors of a positive semidefinite matrix must be

nonnegative, the conditions in Eq. (2) follow. Thus, if there exists a matrixG, which

satisfies Eq. (1), and its symmetric part is positive semidefinite, then the vectorp must

satisfy conditions in Eq. (2).

For sufficiency, it has to be shown that if a vectorp satisfies the conditions in Eq.

(2), then there exists a matrixG, whose symmetric part is positive semidefinite, which

satisfies Eq. (1). A constructive proof of this statement follows. DenoteX = [x1 x2 ]

andY = [y1 y2 ]. Then, Eq. (1) may be rewritten asGX = Y . LetQ be an orthogonal

matrix, such that

Q
T
Y =

"eY1
0

#
(6)

whereeY1 is a nonsingular2�2 matrix. The matrixQ can be obtained by QR factorization3

of Y . Define eX1;
eX2 as follows " eX1eX2

#
= Q

T
X (7)

where eX1 is a2�2 matrix, and eX2 is a(m� 2)�2 matrix. Note thateX1 is nonsingular

if x1 and x2 are linearly independent (otherwise, Eq. (1) is solved trivially). DefiningeG11 = eY1 eX�1

1
, it can be seen that" eG11 0

0 0

#" eX1eX2

#
=

"eY1
0

#
(8)

Therefore, it follows that the matrixG defined as

G = Q

" eG11 0

0 0

#
Q
T (9)

satisfiesGX = Y:

Next, it is shown thatsym(G) � 0. From Eq. (5) it follows that conditions in Eq. (2)

imply sym
�
Y
T
X

�
� 0. Next, sinceY T

X =
�
Q
T
Y

�T �
Q
T
X

�
= eY T

1
eX1, sym

�
Y
T
X

�
�

0 leads tosym
�eY T

1
eX1

�
� 0. Noting that sym

�eY T
1

eX1

�
= eXT

1

h
sym

� eG11

�i eX1 � 0,
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sym

� eG11

�
� 0 follows from the nonsingularity ofeX1. Finally, by construction,

sym(G) � 0 if sym

� eG11

�
� 0.

Furthermore, ifG is symmetric, that is,G = sym(G), then yT
1
x2 = xT

1
GTx2 =

xT
2
GTx1 = yT

2
x1, so that the additional condition in the proposition is satisfied. On the

other hand, the additional constraint ensures thatY TX = eY T
1
eX1 is symmetric. Since

eY1 = eG11
eX1, eY T

1
eX1 = eXT

1
eY1, and eX1 is nonsingluar, it follows thateG11 is symmetric.

Finally, again by construction,G is symmetric wheneG11 is symmetric. �

The next step in solution of Eq. (1) is to determine a coefficient vector,p, that satisfies

conditions of the proposition, Eq. (2). A number of approaches have been attempted for

this problem2. A very efficient and reliable numerical approach to determining a feasible

coefficient vector, based on minimax optimization, is presented below.

The conditions of Eq. (2) may be used directly for a minimax optimization. However,

note that while the first two conditions form a quadratic in the coefficient vector,p, the

last condition is much more complicated, potentially leading to numerical inefficiencies

in the optimization algorithms. Sufficient conditions on the coefficient vectorp, in terms

of four quadratic inequalities, are as follows:

f1(p) = pT
�
V T

1
W1 +

1

2

�
V T

1
W2 + V T

2
W1

��
p � 0

f2(p) = pT
�
V T

1 W1 �

1

2

�
V T

1 W2 + V T

2 W1

��
p � 0

f3(p) = pT
�
V T

2 W2 +
1

2

�
V T

1 W2 + V T

2 W1

��
p � 0

f4(p) = pT
�
V T

2
W2 �

1

2

�
V T

1
W2 + V T

2
W1

��
p � 0

(10)

The conditions together imply that the coefficient vector,p satisfies

pTV T

1 W1p�

����12
�
pTV T

1 W2p + pTV T

2 W1p
����� � 0

pTV T

2
W2p�

����12
�
pTV T

1
W2p + pTV T

2
W1p

����� � 0

(11)

It can be readily verified that if the coefficient vectorp satisfies the conditions in Eq.

(11), then the inequalities of Eq. (2) are also satisfied.
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Since the four expressions on the left hand side of the inequalities in Eq. (10)

are quadratic in the coefficient vector,p, a feasible coefficient vector can be reliably

determined using numerical programming techniques. The approach is to maximize the

minimum of the four quadratic functions,fi(p); i = 1; :::;4, with respect top, until all of

them are positive. This problem becomes a standard minimax problem by reversing the

sign of the quadratic functions, that is, minimizing the maximum of�fi(p); i = 1; :::; 4

with respect top. By introducing a scalar variable,�, the minimax problem is transformed

to a constrained minimization problem, as follows:

min
p;�

� such that fi(p) + � � 0; i = 1; :::; 4 (12)

Standard nonlinear programming techniques may be used for this constrained

minimization4. Analytic gradients of the quadratic functions,fi(p); i = 1; :::; 4,

are readily available, since the gradient of any quadratic function is given as

@
@p

�
pTQp

�
=

�
Q+QT

�
p. The optimization in Eq. (12) is very well-behaved because

the functions,fi(p); i = 1; :::; 4, are quadratic inp, and analytic gradients are linear in

p. A nonpositive value of� in Eq. (12) provides a feasible coefficient vector,p, that

satisfies the conditions in Eq. (2). The convergence of the nonlinear optimization in

Eq. (12) is not an issue, since the search can be terminated once a desirable (negative)

target value of� has been attained.

Furthermore, if a symmetric and positive semidefinite solution of Eq. (1) is desired,

it follows from the Proposition that an additional equality constraint,

g(p) = pT
�
V T
1 W2 � V T

2 W1

�
p = 0 (13)

must be satisfied apart from the conditions in Eq. (2). It is noted that this equality

constraint again involves a quadratic inp, so that its analytic gradient is linear and

readily available. Therefore, to obtain a feasible coefficient vector,p, for a symmetric

and positive semidefinite solution matrix,G, the equality constraint in Eq. (13) must be

included with the optimization of Eq. (12). Again, a feasible vectorp is obtained as

soon as the scalar parameter,�, attains a nonpositive value.
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Experience in application of the minimax approach presented above has shown

that this technique is very effective in obtaining a feasible coefficient vector,p, which

satisfies the conditions in Eq. (2).

Once a feasible coefficient vector,p, satisfying the conditions of the Proposition has

been obtained, a constrained solution of Eq. (1) may be constructed as follows:

1. Form them � 2 matrices,Y = [V1p V2p ], andX = [W1p W2p ]

2. Perform a QR decomposition ofY to obtain eY1 as in Eq. (6), and obtaineX1 from

Eq. (7).

3. Using eG11 = eY1 eX�11
, form the solution matrixG as in Eq. (9).

From the proof of the Proposition, it follows that starting with a feasible coefficient

vector, the matrix,G, constructed from the steps above is a desired solution of the

system of matrix equations in Eq. (1).

Numerical Example

A numerical example is presented in this section to demonstrate the solution technique

presented in this report. The data matrices (W1;W2; V1; V2) used in this example have

been obtained from the numerical example in Ref. 2 for damping enhancement of a

model of a flexible space structure at NASA Langley. For this example,m = 4 and

n = 8. The 4 � 8 data matricesW1;W2; V1; V2 are given below.

V1 =

2
666664

0:002 �0:202 0:326 �0:468 �0:063 0:001 �0:002 0:005

0:000 0:721 �0:406 �0:156 0:005 0:028 0:042 0:015

�0:002 �0:338 0:279 �0:063 0:055 0:035 0:051 0:023

0:001 �0:205 �0:167 0:809 �0:031 0:026 0:044 0:010

3
777775

V2 =

2
666664

0:063 �0:001 0:002 �0:005 0:002 �0:202 0:326 �0:468

�0:005 �0:028 �0:042 �0:015 0:000 0:721 �0:406 �0:156

�0:055 �0:035 �0:051 �0:023 �0:002 �0:338 0:279 �0:063

0:031 �0:026 �0:044 �0:010 0:001 �0:205 �0:167 0:809

3
777775
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W1 =

2
666664

0:267 0:092 0:137 0:041 �0:790 0:175 0:259 0:095

0:000 0:073 0:116 0:028 �0:131 0:256 0:370 0:143

�0:238 0:051 0:091 0:016 0:465 0:299 0:454 0:186

0:137 0:068 0:105 0:038 �0:446 0:156 0:250 0:170

3
777775

W2 =

2
666664

0:790 �0:175 �0:259 �0:095 0:267 0:092 0:137 0:041

0:131 �0:256 �0:370 �0:143 0:000 0:073 0:116 0:028

�0:465 �0:299 �0:454 �0:186 �0:238 0:051 0:091 0:016

0:446 �0:156 �0:250 �0:170 0:137 0:068 0:105 0:038

3
777775

The problem is to determine a4�4 matrixG whose symmetric part is positive semidefinite

and solves Eq. (1) for some8 � 1 coefficient vectorp.

The first step is to determine a feasible coefficient vector,p, which satisfies the

conditions of the Proposition. This is done by solving the nonlinear optimization problem

in Eq. (12). Note that upper and lower bounds have to be imposed on the elements of

the coefficient vectorp for solution of this optimization problem. The upper bounds were

set to1:0, and the lower bounds were set to�1:0 for the current solution. Optimization

software of Refs. 5 and 6 is used to determine a feasible value ofp as

p = [1:000 1:000 1:000 1:000 �0:966 1:000 �0:404 0:948 ]
T

Using this feasible value of the coefficient vector,p, the first step is to form the

matricesY and X, which are

Y =

2
666664

�0:275 �0:721

0:180 0:647

�0:140 �0:674

0:485 0:579

3
777775

X =

2
666664

1:462 0:078

0:587 �0:585

�0:239 �1:146

0:995 �0:202

3
777775

For the second step, a QR decomposition5 of Y results in

Q =

2
666664

�0:456 0:308 �0:237 0:801

0:299 �0:473 0:630 0:538

�0:233 0:631 0:722 �0:162

0:805 0:532 �0:159 0:207

3
777775
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and eY1 =

"
0:602 1:146

0:000 �0:645

#
. Using Eq. (7), it follows thateX1 =

"
0:366 �0:106

0:551 �0:530

#
.

Finally, eG11 = eY1 eX�1

1
=

"
7:019 �3:565

�2:624 1:741

#
, and from Eq. (9), a constrained

solution of Eq. (1) is

G =

2666664
2:494 �2:220 2:298 �2:078

�2:104 1:890 �1:969 1:683

2:095 �1:895 1:983 �1:623

�2:539 2:191 �2:218 2:392

3777775
Eigenvalues of the symmetric part ofG aref8:447; 0:3133; 0:000; 0:000g, which shows

that it is positive semidefinite. It can be readily checked that this matrix satisfies Eq. (1).

Similarly, for a symmetric and positive semidefinite solution, the additional equality

constraint of Eq. (13) is included in the optimization problem, to obtain a feasible

coefficient vector as

p = [0:074 �0:176 �0:244 �0:085 0:071 �0:081 �0:136 �0:068 ]
T

Following the steps above, a symmetric and positive semidefinite solution of the system

of equations is obtained as

G =
1

10

2666664
0:352 0:312 �0:245 0:165

0:312 0:947 0:467 0:092

�0:245 0:467 0:867 �0:169

0:165 0:092 �0:169 0:082

3777775
Eigenvalues of this matrix aref0:138; 0:087; 0:000; 0:000g, which shows that this matrix

is symmetric and positive definite. Again, it can be readily verified that this matrix does

satisfy Eq. (1).

This solution technique has been used for various other data sets corresponding to

different problems of damping enhancement of flexible space structures. It has been

found to be very efficient and reliable on all problems attempted thus far.
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Summary

This report has presented an approach to the constrained solution of a system of

matrix equations which arises frequently in pole placement with output feedback under

dissipativity constraints. It has been shown that previously available necessary conditions

for the existence of constrained solutions are sufficient as well. A minimax approach

to determine a feasible coefficient vector satisfying the conditions for existence of a

solution was presented, and the steps to construct a constrained solution to the system of

matrix equations have been described. This approach has been successfully applied to

the design of static dissipative controllers for eigensystem assignment in several flexible

structure applications, and has proven to be very reliable and efficient.
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